10 Fakten über Artikel 15 GG – Vergesellschaftung

  1. Art. 15 GG lautet:
    Grund und Boden, Naturschätze und Produktionsmittel können zum Zwecke der Vergesellschaftung durch ein Gesetz, das Art und Ausmaß der Entschädigung regelt, in Gemeineigentum oder in andere Formen der Gemeinwirtschaft überführt werden. Für die Entschädigung gilt Artikel 14 Absatz 3 Satz 3 und 4 entsprechend.
  2. Die Norm ist von Anfang im Grundgesetz und wurde bislang nicht geändert.
  3. Die Vergesellschaftung – nichts anderes als eine Sozialisierung – ist nach einhelliger Meinung nicht mit der Enteignung gleichzusetzen und ist nach herrschender Meinung auch kein Unter- oder Sonderfall der Enteignung. Sie ist ein eigenständiges Rechtsinstitut, das sich in Zielsetzung, Voraussetzungen, Formtypik und Folgen grundsätzlich von der Enteignung unterscheidet.
  4. Im Katalog der Grundrechte wirkt die Norm auf den ersten Blick wie ein Fremdkörper, da sie vermeintlich nur ein Eingriffsrecht des Staates und eben kein Abwehrrecht gegen den Staat darstellt. Allerdings kann Art. 15 durchaus als Grundrecht verstanden werden: nämlich als Grundrecht auf Nichtsozialisierung, wenn die Voraussetzungen des Artikel nicht vorliegen bzw. nicht erfüllt werden. Diese Ansicht ist zwar nicht unumstritten, entspricht aber der Systematik des Grundgesetzes.
  5. Vergesellschaftung oder Sozialisierung heißt, dass eine auf Gewinnerzielung gerichtete private Struktur in eine gemeinnützige, öffentliche, regelmäßig nicht auf Gewinn abzielende Struktur umgewandelt wird, eben Gemeineigentum oder Gemeinwirtschaft. Vergesellschaftung meint damit einerseits nicht zwingend Verstaatlichung, andererseits ist auch die Umwandlung eines Privatunternehmens in ein erwerbswirschaftliches staatliches Unternehmen von Art. 15 gerade nicht abgedeckt. Ziel von Artikel 15 können gerade auch Organisationsformen sein, die unsere Rechtsordnung noch nicht kennt, Art. 15 bietet insoweit die verfassungsrechtliche Grundlage für diese.
  6. Gegenstand der Vergesellschaftung können Grund und Boden, Naturschätze sowie Produktionsmittel sein. Nach älterer herrschender Lehre sind Produktionsmittel solche, die auf die Erzeugung von Gütern gerichtet sind, womit z.B. Handel, Banken, Versicherungen, Software, Algorithmen, KI-Systeme von Art. 15 nicht umfasst würden. Diese Sichtweise wird schon seit längerem – vgl. z.B. von Münch/Kunig, Grundgesetz-Kommentar Art. 15 Rn 18 – kritisch gesehen. Auch nach hier vertretener Ansicht ist der Begriff der Produktionsmittel weit auszulegen.
  7. Zwingend ist, dass eine Vergesellschaftung durch Gesetz erfolgt, das darüber hinaus auch Art und Umfang der Entschädigung regelt. Eine Vergesellschaftung, die diese Anforderungen nicht erfüllt, also z.B. nicht auf Grundlage eines Gesetzes erfolgt, ist damit verfassungswidrig. Insoweit sehe ich hier Art. 15 auch als eine Stärkung des Grundrechts auf Eigentums (Art. 14).
  8. Schon die Weimarer Reichsverfassung kannte mit Art. 156 eine ähnliche Vorschrift: “Das Reich kann durch Gesetz, unbeschadet der Entschädigung, in sinngemäßer Anwendung der für Enteignung geltenden Bestimmungen, für die Vergesellschaftung geeignete private wirtschaftliche Unternehmungen in Gemeineigentum überführen.” Auch diese Formulierung belegt den eigenen Charakter der Vergesellschaftung.
  9. Auch wenn Art. 15 faktisch keine praktische Bedeutung hat, ist es eine wichtige Norm im Gefüge des Grundgesetzes. Sie zeigt die Systemoffenheit unserer Verfassung, ohne dass durch sie ein besonderes wirtschaftliches System gefordert wird. Sie ist Teil des “Bonner Kompromisses”, ohne den die SPD dem Grundgesetz nicht zugestimmt hätte. Zudem ist er nach hier vertretener Auffassung ein eigenständiges Grundrecht und eine weitere Konkretisierung des Art. 14 GG.
  10. Bestrebungen, Art. 15 abzuschaffen, wie sie z.B. zuletzt im April 2019 von der FDP verfolgt wurden, sind daher abzulehnen. Es wäre ein Angriff auf das Balance des Grundgesetzes im allgemeinen, auf die Grundrechte im besonderen und würde zukünftigen – ggf. z.B. im Bereich der KI und disruptiven Technlologien notwendigen – Vergesellschaftungen die verfassungsrechtliche Grundlage entziehen.

Dokumentiert: RFC 1

Network Working Group Steve Crocker
Request for Comments: 1 UCLA
7 April 1969

Title: Host Software
Author: Steve Crocker
Installation: UCLA
Date: 7 April 1969
Network Working Group Request for Comment: 1

CONTENTS

INTRODUCTION

I. A Summary of the IMP Software

Messages

Links

IMP Transmission and Error Checking

Open Questions on the IMP Software

II. Some Requirements Upon the Host-to-Host Software

Simple Use

Deep Use

Error Checking

III. The Host Software

Establishment of a Connection

High Volume Transmission

A Summary of Primitives

Error Checking

Closer Interaction

Open Questions

Crocker [Page 1]

RFC 1 Host Software 7 April 1969

IV. Initial Experiments

Experiment One

Experiment Two

Introduction

The software for the ARPA Network exists partly in the IMPs and
partly in the respective HOSTs. BB&N has specified the software of
the IMPs and it is the responsibility of the HOST groups to agree on
HOST software.

During the summer of 1968, representatives from the initial four
sites met several times to discuss the HOST software and initial
experiments on the network. There emerged from these meetings a
working group of three, Steve Carr from Utah, Jeff Rulifson from SRI,
and Steve Crocker of UCLA, who met during the fall and winter. The
most recent meeting was in the last week of March in Utah. Also
present was Bill Duvall of SRI who has recently started working with
Jeff Rulifson.

Somewhat independently, Gerard DeLoche of UCLA has been working on
the HOST-IMP interface.

I present here some of the tentative agreements reached and some of
the open questions encountered. Very little of what is here is firm
and reactions are expected.

I. A Summary of the IMP Software

Messages

Information is transmitted from HOST to HOST in bundles called
messages. A message is any stream of not more than 8080 bits,
together with its header. The header is 16 bits and contains the
following information:

Destination 5 bits
Link 8 bits
Trace 1 bit
Spare 2 bits

The destination is the numerical code for the HOST to which the
message should be sent. The trace bit signals the IMPs to record
status information about the message and send the information back to
the NMC (Network Measurement Center, i.e., UCLA). The spare bits are
unused.

Crocker [Page 2]

RFC 1 Host Software 7 April 1969

Links

The link field is a special device used by the IMPs to limit certain
kinds of congestion. They function as follows. Between every pair of
HOSTs there are 32 logical full-duplex connections over which messages
may be passed in either direction. The IMPs place the restriction on
these links that no HOST can send two successive messages over the
same link before the IMP at the destination has sent back a special
message called an RFNM (Request for Next Message). This arrangement
limits the congestion one HOST can cause another if the sending HOST
is attempting to send too much over one link. We note, however, that
since the IMP at the destination does not have enough capacity to
handle all 32 links simultaneously, the links serve their purpose only
if the overload is coming from one or two links. It is necessary for
the HOSTs to cooperate in this respect.

The links have the following primitive characteristics. They are
always functioning and there are always 32 of them.

By “always functioning,” we mean that the IMPs are always prepared to
transmit another message over them. No notion of beginning or ending
a conversation is contained in the IMP software. It is thus not
possible to query an IMP about the state of a link (although it might
be possible to query an IMP about the recent history of a link —
quite a different matter!).

The other primitive characteristic of the links is that there are
always 32 of them, whether they are in use or not. This means that
each IMP must maintain 18 tables, each with 32 entries, regardless of
the actual traffic.

The objections to the link structure notwithstanding, the links are
easily programmed within the IMPs and are probably a better
alternative to more complex arrangements just because of their
simplicity.

IMP Transmission and Error Checking

After receiving a message from a HOST, an IMP partitions the message
into one or more packets. Packets are not more than 1010 bits long
and are the unit of data transmission from IMP to IMP. A 24 bit
cyclic checksum is computed by the transmission hardware and is
appended to an outgoing packet. The checksum is recomputed by the
receiving hardware and is checked against the transmitted checksum.
Packets are reassembled into messages at the destination IMP.

Open Questions on the IMP Software

Crocker [Page 3]

RFC 1 Host Software 7 April 1969

1. An 8 bit field is provided for link specification, but only 32
links are provided, why?

2. The HOST is supposed to be able to send messages to its IMP. How
does it do this?

3. Can a HOST, as opposed to its IMP, control RFNMs?

4. Will the IMPs perform code conversion? How is it to be
controlled?

II. Some Requirements Upon the Host-to-Host Software

Simple Use

As with any new facility, there will be a period of very light usage
until the community of users experiments with the network and begins
to depend upon it. One of our goals must be to stimulate the
immediate and easy use by a wide class of users. With this goal, it
seems natural to provide the ability to use any remote HOST as if it
had been dialed up from a TTY (teletype) terminal. Additionally, we
would like some ability to transmit a file in a somewhat different
manner perhaps than simulating a teletype.

Deep Use

One of the inherent problems in the network is the fact that all responses
from a remote HOST will require on the order of a half-second or so,
no matter how simple. For teletype use, we could shift to a
half-duplex local-echo arrangement, but this would destroy some of the
usefulness of the network. The 940 Systems, for example, have a very
specialized echo.

When we consider using graphics stations or other sophisticated
terminals under the control of a remote HOST, the problem becomes more
severe. We must look for some method which allows us to use our most
sophisticated equipment as much as possible as if we were connected
directly to the remote computer.

Error Checking

The point is made by Jeff Rulifson at SRI that error checking at major
software interfaces is always a good thing. He points to some
experience at SRI where it has saved much dispute and wasted effort.
On these grounds, we would like to see some HOST to HOST checking.
Besides checking the software interface, it would also check the
HOST-IMP transmission hardware. (BB&N claims the HOST-IMP hardware
will be as reliable as the internal registers of the HOST. We believe

Crocker [Page 4]

RFC 1 Host Software 7 April 1969

them, but we still want the error checking.)

III. The Host Software

Establishment of a Connection

The simplest connection we can imagine is where the local HOST acts as
if it is a TTY and has dialed up the remote HOST. After some
consideration of the problems of initiating and terminating such a
connection , it has been decided to reserve link 0 for communication
between HOST operating systems. The remaining 31 links are thus to be
used as dial-up lines.

Each HOST operating system must provide to its user level programs a
primitive to establish a connection with a remote HOST and a primitive
to break the connection. When these primitives are invoked, the
operating system must select a free link and send a message over link
0 to the remote HOST requesting a connection on the selected link.
The operating system in the remote HOST must agree and send back an
accepting message over link 0. In the event both HOSTs select the same
link to initiate a connection and both send request messages at
essentially the same time, a simple priority scheme will be invoked in
which the HOST of lower priority gives way and selects another free
link. One usable priority scheme is simply the ranking of HOSTS
by their identification numbers. Note that both HOSTs are aware that
simultaneous requests have been made, but they take complementary
actions: The higher priority HOST disregards the request while the
lower priority HOST sends both an acceptance and another request.

The connection so established is a TTY-like connection in the
pre-log-in state. This means the remote HOST operating system will
initially treat the link as if a TTY had just called up. The remote
HOST will generate the same echos, expect the same log-in sequence and
look for the same interrupt characters.

High Volume Transmission

Teletypes acting as terminals have two special drawbacks when we
consider the transmission of a large file. The first is that some
characters are special interrupt characters. The second is that
special buffering techniques are often employed, and these are
appropriate only for low-speed character at time transmission.

We therefore define another class of connection to be used for the
transmission of files or other large volumes of data. To initiate
this class of link, user level programs at both ends of an established
TTY-like link must request the establishment of a file-like connection
parallel to the TTY-like link. Again the priority scheme comes into

Crocker [Page 5]

RFC 1 Host Software 7 April 1969

play, for the higher priority HOST sends a message over link 0 while
the lower priority HOST waits for it. The user level programs are, of
course, not concerned with this. Selection of the free link is done
by the higher priority HOST.

File-like links are distinguished by the fact that no searching for
interrupt characters takes place and buffering techniques appropriate
for the higher data rates takes place.

A Summary of Primitives

Each HOST operating systems must provide at least the following
primitives to its users. This list knows not to be necessary but not
sufficient.

a) Initiate TTY-like connection with HOST x.

b) Terminate connection.

c) Send/Receive character(s) over TTY-like connection.

d) Initiate file-like connection parallel to TTY-like connection.

e) Terminate file-like connection.

f) Send/Receive over file-like connection.

Error Checking

We propose that each message carry a message number, bit count, and a
checksum in its body, that is transparent to the IMP. For a checksum
we suggest a 16-bit end-around-carry sum computed on 1152 bits and
then circularly shifted right one bit. The right circular shift every
1152 bits is designed to catch errors in message reassembly by the IMPs.

Closer Interaction

The above described primitives suggest how a user can make simple use
of a remote facility. They shed no light on how much more intricate
use of the network is to be carried out. Specifically, we are
concerned with the fact that as some sites a great deal of work has
gone into making the computer highly responsive to a sophisticated
console. Culler’s consoles at UCSB and Englebart’s at SRI are at
least two examples. It is clear that delays of a half-second or so
for trivial echo-like responses degrade the interaction to the point
of making the sophistication of the console irrelevant.

We believe that most console interaction can be divided into two

Crocker [Page 6]

RFC 1 Host Software 7 April 1969

parts, an essentially local, immediate and trivial part and a remote,
more lengthy and significant part. As a simple example, consider a
user at a console consisting of a keyboard and refreshing display
screen. The program the user is talking typing into accumulates a
string of characters until a carriage return is encountered and then
it processes the string. While characters are being typed, it
displays the characters on the screen. When a rubout character is
typed, it deletes the previous non-rubout character. If the user
types H E L L O <- <- P where <- is rubout and is
carriage-return, he has made nine keystrokes. If each of these
keystrokes causes a message to be sent which in return invokes
instructions to our display station we will quickly become bored.

A better solution would be to have the front-end of the remote program
— that is the part scanning for <- and — be resident in our
computer. In that case, only one five character message would be
sent, i.e., H E L P , and the screen would be managed locally.

We propose to implement this solution by creating a language for
console control. This language, current named DEL, would be used by
subsystem designers to specify what components are needed in a
terminal and how the terminal is to respond to inputs from its
keyboard, Lincoln Wand, etc. Then, as a part of the initial protocol,
the remote HOST would send to the local HOST, the source language text
of the program which controls the console. This program would have
been by the subsystem designer in DEL, but will be compiled locally.

The specifications of DEL are under discussion. The following
diagrams show the sequence of actions.

Crocker [Page 7]

RFC 1 Host Software 7 April 1969

A. Before Link Establishment

/ \
| +-----------+ +-----------+ |
| | | | | |
| | | | | |
| | terminal | | terminal | |
| | | | | |
| | | | | |
| +-----+-----+ +-----+-----+ |
| | | |
| | | |
| | | |
| +-----+-----+ +-----------+ |
| | | | Request connection | | | |
UCLA { | | | -> over link 25 | | | } SRI
| | +-+-+ | +-+ +-+ | +-+-+ | |
| | | OS|---+-=|I|----------|I|=-+---| OS| | |
| | +-+-+ | +-+ +-+ | +---+ | |
| | | | | |
| | | | | |
| +-----------+ +-----------+ |
| HOST: UCLA HOST: SRI |
\ /

Crocker [Page 8]

RFC 1 Host Software 7 April 1969

b. After Link Establishment and Log-in

/ \
| +-----------+ +-----------+ |
| | | | | |
| | | | | |
| | terminal | | terminal | |
| | | | | |
| | | | | |
| +-----+-----+ +-----+-----+ |
| | | |
| | | |
| | | |
| +-----+-----+ "Please send front"+-----------+ |
| | | | end control" | | | |
UCLA { | | | -> | | | } SRI ___
| | +-+-+ | +-+ +-+ | +--+---+ | | / |
| | | OS|---+-=|I|----------|I|=-+--|OS|NLS| +----+---| |
| | +-+-+ | +-+ +-+ | +------+ | | |___/
| | | DEL prog. | | | | |
| | | <- | | | |____|
| +-----------+ +-----------+ |
| HOST: UCLA HOST:SRI |
\ /

Crocker [Page 9]

RFC 1 Host Software 7 April 1969

c. After Receipt and Compilation of the DEL program

/ \
| +-----------+ +-----------+ |
| | | | | |
| | | | | |
| | terminal | | terminal | |
| | | | | |
| | | | | |
| +-----+-----+ +-----+-----+ |
| |Trivial | |
| |Responses | |
| | | |
| +-----+------+ +-----------+ |
| | | | | | | |
UCLA { | | | Major Responses | | | } SRI ___
| | +--+--+ | +-+ +-+ | +--+---+ | | / |
| | |DEL |---+-=|I|----------|I|=-+--|OS|NLS| +---+---| |
| | |front| | +-+ +-+ | +------+ | | |___/
| | | end | | | | | | |
| | |prog.| | | | | |____|
| | +-----+ | | | |
| | | OS | | | | |
| | +-----+ | | | |
| | | | | |
| +------------+ +-----------+ |
| HOST: UCLA HOST: SRI |
\ /

Open Questions

1. If the IMPs do code conversion, the checksum will not be correct.

2. The procedure for requesting the DEL front end is not yet
specified.

IV. Initial Experiments

Experiment One

SRI is currently modifying their on-line retrieval system which will
be the major software component on the Network Documentation Center so
that it can be operated with model 35 teletypes. The control of the
teletypes will be written in DEL. All sites will write DEL compilers
and use NLS through the DEL program.

Experiment Two

Crocker [Page 10]

RFC 1 Host Software 7 April 1969

SRI will write a DEL front end for full NLS, graphics included. UCLA
and UTAH will use NLS with graphics.

[ This RFC was put into machine readable form for entry ]
[ into the online RFC archives by Celeste Anderson 3/97 ]

Crocker [Page 11]

Was bedeutet die Abkürzung DRT im angelsächsischen Mediziner Slang?

Die Abkürzung DRT steht im englischsprachigen Mediziner-Slang meist für ‘Dead Right There (patient Dead At Scene Of Accident)’.

Mehr Abkürzungen mit den Anfangsbuchstaben DR finden Sie hier.

Was bedeutet die Abkürzung AITR in Chats?

Die Abkürzung AITR steht in Chats meist für ‘Adult in the room’.

Mehr Abkürzungen mit den Anfangsbuchstaben AI finden Sie hier.